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The game of chess is the longest-studied domain in the history of artificial intelligence.
The strongest programs are based on a combination of sophisticated search techniques,
domain-specific adaptations, and handcrafted evaluation functions that have been refined
by human experts over several decades. By contrast, the AlphaGo Zero program recently
achieved superhuman performance in the game of Go by reinforcement learning from self-play.
In this paper, we generalize this approach into a single AlphaZero algorithm that can achieve
superhuman performance in many challenging games. Starting from random play and given
no domain knowledge except the game rules, AlphaZero convincingly defeated a world
champion program in the games of chess and shogi (Japanese chess), as well as Go.

T
he study of computer chess is as old as
computer science itself. Charles Babbage,
Alan Turing, Claude Shannon, and John
von Neumann devised hardware, algo-
rithms, and theory to analyze and play the

game of chess. Chess subsequently became a
grand challenge task for a generation of artifi-
cial intelligence researchers, culminating in high-
performance computer chess programs that play
at a superhuman level (1, 2). However, these sys-
tems are highly tuned to their domain and can-
not be generalized to other games without
substantial human effort, whereas general game-
playing systems (3, 4) remain comparatively weak.
A long-standing ambition of artificial intelli-

gence has been to create programs that can in-
stead learn for themselves from first principles
(5, 6). Recently, the AlphaGo Zero algorithm
achieved superhuman performance in the game

of Go by representing Go knowledge with the
use of deep convolutional neural networks (7, 8),
trained solely by reinforcement learning from
games of self-play (9). In this paper, we introduce
AlphaZero, a more generic version of the AlphaGo
Zero algorithm that accommodates, without
special casing, a broader class of game rules.
We apply AlphaZero to the games of chess and
shogi, as well as Go, by using the same algorithm
and network architecture for all three games.
Our results demonstrate that a general-purpose
reinforcement learning algorithm can learn,
tabula rasa—without domain-specific human
knowledge or data, as evidenced by the same
algorithm succeeding in multiple domains—
superhuman performance across multiple chal-
lenging games.
A landmark for artificial intelligence was

achieved in 1997 when Deep Blue defeated the
human world chess champion (1). Computer
chess programs continued to progress stead-
ily beyond human level in the following two
decades. These programs evaluate positions by
using handcrafted features and carefully tuned
weights, constructed by strong human players and

programmers, combined with a high-performance
alpha-beta search that expands a vast search tree
by using a large number of clever heuristics and
domain-specific adaptations. In (10) we describe
these augmentations, focusing on the 2016 Top
Chess Engine Championship (TCEC) season 9
world champion Stockfish (11); other strong chess
programs, including Deep Blue, use very similar
architectures (1, 12).
In terms of game tree complexity, shogi is a

substantially harder game than chess (13, 14): It
is played on a larger boardwith awider variety of
pieces; any captured opponent piece switches
sides and may subsequently be dropped anywhere
on the board. The strongest shogi programs, such
as the 2017 Computer Shogi Association (CSA)
world champion Elmo, have only recently de-
feated human champions (15). These programs
use an algorithm similar to those used by com-
puter chess programs, again based on a highly
optimized alpha-beta search engine with many
domain-specific adaptations.
AlphaZero replaces the handcrafted knowl-

edge and domain-specific augmentations used
in traditional game-playing programs with deep
neural networks, a general-purpose reinforce-
ment learning algorithm, and a general-purpose
tree search algorithm.
Instead of a handcrafted evaluation function

and move-ordering heuristics, AlphaZero uses a
deep neural network (p, v) = fq(s) with param-
eters q. This neural network fq(s) takes the board
position s as an input and outputs a vector of
move probabilities pwith components pa = Pr(a|s)
for each action a and a scalar value v estimating
the expected outcome z of the game from posi-
tion s, v≈E½zjs�. AlphaZero learns these move
probabilities and value estimates entirely from
self-play; these are then used to guide its search
in future games.
Instead of an alpha-beta search with domain-

specific enhancements, AlphaZero uses a general-
purposeMonteCarlo tree search (MCTS) algorithm.
Each search consists of a series of simulated
games of self-play that traverse a tree from root
state sroot until a leaf state is reached. Each sim-
ulation proceeds by selecting in each state s a
move a with low visit count (not previously
frequently explored), high move probability, and
high value (averaged over the leaf states of
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Fig. 1. Training AlphaZero for 700,000 steps. Elo ratings were
computed from games between different players where each player
was given 1 s per move. (A) Performance of AlphaZero in chess
compared with the 2016 TCEC world champion program Stockfish.

(B) Performance of AlphaZero in shogi compared with the 2017
CSA world champion program Elmo. (C) Performance of AlphaZero
in Go compared with AlphaGo Lee and AlphaGo Zero (20 blocks
over 3 days).
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simulations that selected a from s) according to
the current neural network fq. The search returns
a vector p representing a probability distribution
over moves, pa = Pr(a|sroot).
The parameters q of the deep neural network

in AlphaZero are trained by reinforcement learn-
ing from self-play games, starting from randomly
initialized parameters q. Each game is played by
running anMCTS from the current position sroot =
st at turn t and then selecting a move, at ~ pt,
either proportionally (for exploration) or greedily
(for exploitation) with respect to the visit counts
at the root state. At the end of the game, the ter-
minal position sT is scored according to the rules
of the game to compute the game outcome z: −1
for a loss, 0 for a draw, and +1 for a win. The
neural network parameters q are updated to
minimize the error between the predicted out-
come vt and the game outcome z and to maxi-
mize the similarity of the policy vector pt to the
search probabilities pt. Specifically, the param-
eters q are adjusted by gradient descent on a
loss function l that sums over mean-squared
error and cross-entropy losses

ðp; vÞ ¼ fqðsÞ; l ¼ ðz� vÞ2 � pΤlog pþ c‖q‖2; ð1Þ

where c is a parameter controlling the level of L2
weight regularization. The updated parameters
are used in subsequent games of self-play.
The AlphaZero algorithm described in this paper

[see (10) for the pseudocode] differs from the orig-
inal AlphaGo Zero algorithm in several respects.
AlphaGo Zero estimated and optimized the

probability of winning, exploiting the fact that
Go games have a binary win or loss outcome.
However, both chess and shogi may end in drawn
outcomes; it is believed that the optimal solution
to chess is a draw (16–18). AlphaZero instead es-
timates and optimizes the expected outcome.
The rules of Go are invariant to rotation and

reflection. This fact was exploited in AlphaGo and
AlphaGo Zero in two ways. First, training data
were augmented by generating eight symmetries
for each position. Second, during MCTS, board
positions were transformed by using a randomly
selected rotation or reflection before being eval-
uated by the neural network, so that the Monte
Carlo evaluation was averaged over different
biases. To accommodate a broader class of games,
AlphaZero does not assume symmetry; the rules
of chess and shogi are asymmetric (e.g., pawns
only move forward, and castling is different on
kingside and queenside). AlphaZero does not
augment the training data and does not trans-
form the board position during MCTS.
In AlphaGo Zero, self-play games were gen-

erated by the best player from all previous iter-
ations. After each iteration of training, the
performance of the new player was measured
against the best player; if the new player won
by a margin of 55%, then it replaced the best
player. By contrast, AlphaZero simply maintains
a single neural network that is updated contin-
ually rather than waiting for an iteration to com-
plete. Self-play games are always generated by
using the latest parameters for this neural network.

As in AlphaGo Zero, the board state is encoded
by spatial planes based only on the basic rules for
each game. The actions are encoded by either
spatial planes or a flat vector, again based only
on the basic rules for each game (10).
AlphaGo Zero used a convolutional neural

network architecture that is particularly well-
suited to Go: The rules of the game are trans-
lationally invariant (matching the weight-sharing
structure of convolutional networks) and are de-
fined in terms of liberties corresponding to the

adjacencies between points on the board (match-
ing the local structure of convolutional networks).
By contrast, the rules of chess and shogi are
position dependent (e.g., pawns may move two
steps forward from the second rank and pro-
mote on the eighth rank) and include long-
range interactions (e.g., the queen may traverse
the board in one move). Despite these differ-
ences, AlphaZero uses the same convolutional
network architecture as AlphaGo Zero for chess,
shogi, and Go.
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Fig. 2. Comparison with specialized programs. (A) Tournament evaluation of AlphaZero in chess,
shogi, and Go in matches against, respectively, Stockfish, Elmo, and the previously published version
of AlphaGo Zero (AG0) that was trained for 3 days. In the top bar, AlphaZero plays white; in
the bottom bar, AlphaZero plays black. Each bar shows the results from AlphaZero’s perspective: win
(W; green), draw (D; gray), or loss (L; red). (B) Scalability of AlphaZero with thinking time compared with
Stockfish and Elmo. Stockfish and Elmo always receive full time (3 hours per game plus 15 s per move);
time for AlphaZero is scaled down as indicated. (C) Extra evaluations of AlphaZero in chess against
the most recent version of Stockfish at the time of writing (27) and against Stockfish with a strong
opening book (28). Extra evaluations of AlphaZero in shogi were carried out against another
strong shogi program, Aperyqhapaq (29), at full time controls and against Elmo under 2017 CSA world
championship time controls (10 min per game and 10 s per move). (D) Average result of chess matches
starting from different opening positions, either common human positions (see also Fig. 3) or the 2016
TCEC world championship opening positions (see also fig. S4), and average result of shogi matches
starting from common human positions (see also Fig. 3). CSA world championship games start
from the initial board position. Match conditions are summarized in tables S8 and S9.
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The hyperparameters of AlphaGo Zero were
tuned by Bayesian optimization. In AlphaZero,
we reuse the same hyperparameters, algorithm
settings, and network architecture for all games
without game-specific tuning. The only excep-
tions are the exploration noise and the learning
rate schedule [see (10) for further details].

We trained separate instances of AlphaZero
for chess, shogi, and Go. Training proceeded for
700,000 steps (in mini-batches of 4096 training
positions) starting from randomly initialized
parameters. During training only, 5000 first-
generation tensor processing units (TPUs) (19)
were used to generate self-play games, and

16 second-generation TPUs were used to train
the neural networks. Training lasted for approx-
imately 9 hours in chess, 12 hours in shogi, and
13 days in Go (see table S3) (20). Further details
of the training procedure are provided in (10).
Figure 1 shows the performance of AlphaZero

during self-play reinforcement learning, as a
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Fig. 3. Matches starting from the most popular human openings.
AlphaZero plays against (A) Stockfish in chess and (B) Elmo in shogi.
In the left bar, AlphaZero plays white, starting from the given position;
in the right bar, AlphaZero plays black. Each bar shows the results from

AlphaZero’s perspective: win (green), draw (gray), or loss (red).
The percentage frequency of self-play training games in which this
opening was selected by AlphaZero is plotted against the duration
of training, in hours.
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function of training steps, on an Elo (21) scale
(22). In chess, AlphaZero first outperformed
Stockfish after just 4 hours (300,000 steps); in
shogi, AlphaZero first outperformed Elmo after
2 hours (110,000 steps); and inGo, AlphaZero first
outperformed AlphaGo Lee (9) after 30 hours
(74,000 steps). The training algorithm achieved
similar performance in all independent runs (see
fig. S3), suggesting that the high performance of
AlphaZero’s training algorithm is repeatable.
We evaluated the fully trained instances of

AlphaZero against Stockfish, Elmo, and the pre-
vious version of AlphaGo Zero in chess, shogi,
and Go, respectively. Each program was run on
the hardware for which it was designed (23):
Stockfish and Elmo used 44 central processing
unit (CPU) cores (as in the TCEC world cham-
pionship), whereas AlphaZero and AlphaGo Zero
used a single machine with four first-generation
TPUs and 44 CPU cores (24). The chess match
was played against the 2016 TCEC (season 9)
world champion Stockfish [see (10) for details].
The shogi match was played against the 2017
CSA world champion version of Elmo (10). The
Go match was played against the previously pub-
lished version of AlphaGo Zero [also trained for
700,000 steps (25)]. All matches were played by
using time controls of 3 hours per game, plus an
additional 15 s for each move.
In Go, AlphaZero defeated AlphaGo Zero

(9), winning 61% of games. This demonstrates
that a general approach can recover the per-
formance of an algorithm that exploited board
symmetries to generate eight times as much
data (see fig. S1).
In chess, AlphaZero defeated Stockfish, win-

ning 155 games and losing 6 games out of 1000
(Fig. 2). To verify the robustness of AlphaZero,
we played additional matches that started from
common human openings (Fig. 3). AlphaZero
defeated Stockfish in each opening, suggesting
that AlphaZero has mastered a wide spectrum
of chess play. The frequency plots in Fig. 3 and
the time line in fig. S2 show that common human
openings were independently discovered and
played frequently by AlphaZero during self-play
training. We also played a match that started
from the set of opening positions used in the
2016 TCECworld championship; AlphaZero won
convincingly in this match, too (26) (fig. S4). We
played additional matches against themost recent
development version of Stockfish (27) and a var-
iant of Stockfish that uses a strong opening book
(28). AlphaZero won all matches by a large mar-
gin (Fig. 2).
Table S6 shows 20 chess games played by

AlphaZero in its matches against Stockfish.
In several games, AlphaZero sacrificed pieces for
long-term strategic advantage, suggesting that it
has a more fluid, context-dependent positional
evaluation than the rule-based evaluations used
by previous chess programs.
In shogi, AlphaZero defeated Elmo, winning

98.2% of games when playing black and 91.2%
overall. We also played a match under the faster
time controls used in the 2017 CSA world cham-
pionship andagainst another state-of-the-art shogi

program (29); AlphaZero again won bothmatches
by a wide margin (Fig. 2).
Table S7 shows 10 shogi games played by

AlphaZero in its matches against Elmo. The fre-
quency plots in Fig. 3 and the time line in fig. S2
show that AlphaZero frequently plays one of the
two most common human openings but rarely
plays the second, deviating on the very first move.
AlphaZero searches just 60,000 positions

per second in chess and shogi, compared with
60 million for Stockfish and 25 million for Elmo
(table S4). AlphaZero may compensate for the

lower number of evaluations by using its deep
neural network to focus much more selectively
on themost promising variations (Fig. 4 provides
an example from the match against Stockfish)—
arguably a more humanlike approach to search-
ing, as originally proposed by Shannon (30).
AlphaZero also defeated Stockfish when giv-
en 1

10= as much thinking time as its opponent
(i.e., searching ∼1=10;000 as many positions) and
won 46% of games against Elmo when given
1

100= as much time (i.e., searching ∼1=40;000 as
many positions) (Fig. 2). The high performance
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Fig. 4. AlphaZero’s search procedure.The search is illustrated for a position (inset) from game 1
(table S6) between AlphaZero (white) and Stockfish (black) after 29. ... Qf8. The internal state of
AlphaZero’s MCTS is summarized after 102, ..., 106 simulations. Each summary shows the 10 most
visited states. The estimated value is shown in each state, from white’s perspective, scaled to the
range [0, 100]. The visit count of each state, relative to the root state of that tree, is proportional to
the thickness of the border circle. AlphaZero considers 30. c6 but eventually plays 30. d5.
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of AlphaZero with the use of MCTS calls into
question the widely held belief (31, 32) that
alpha-beta search is inherently superior in these
domains.
The game of chess represented the pinnacle

of artificial intelligence research over several
decades. State-of-the-art programs are based on
powerful engines that search many millions of
positions, leveraging handcrafted domain ex-
pertise and sophisticated domain adaptations.
AlphaZero is a generic reinforcement learning
and search algorithm—originally devised for the
game of Go—that achieved superior results with-
in a few hours, searching 1

1000= as many posi-
tions, given no domain knowledge except the
rules of chess. Furthermore, the same algorithm
was applied without modification to the more
challenging game of shogi, again outperforming
state-of-the-art programs within a few hours.
These results bring us a step closer to fulfilling a
longstanding ambition of artificial intelligence
(3): a general game-playing system that can learn
to master any game.
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